Avec des systèmes de calcul basés sur l’IA, il est probable que votre salaire ne soit plus assuré ! Il y a 9 ans, un chauffeur Uber pouvait gagner 60 à 85 dollars pour une course dans la banlieue de Los Angeles, quand la même course aujourd’hui ne lui rapporte que 25 à 35 dollars, explique Slate. Depuis 2022, Uber et Lyft ont renforcé leurs algorithmes pour intégrer des données individualisées pour déterminer le montant de chaque course, ce qui expliquerait l’amplification des variations de paiements entre les conducteurs, rapporte le média vidéo de défense des travailleurs More Perfect Union. Les algorithmes semblent apprendre les montants les plus bas qu’acceptent les chauffeurs pour les transformer en normes individuelles. Le prix des courses n’est plus seulement déterminé par la tension entre l’offre et la demande ou la localisation, mais de plus en plus par le comportement individuel des chauffeurs et livreurs. Le risque, c’est que « le système ne s’arrête pas aux travailleurs indépendants. Les experts affirment que la discrimination salariale algorithmique et la rémunération influencée par l’IA de manière plus générale s’infiltrent dans un nombre croissant de domaines, tels que les soins de santé, la logistique et la technologie, et pourraient bouleverser le travail tel que nous le connaissons ». Grâce aux données, les systèmes peuvent calculer la rémunération la plus basse possible que les travailleurs de chaque secteur toléreront et suggérer des incitations pour contrôler leur comportement. Les systèmes de calculs peuvent optimiser les rémunérations variables pour les réduire, mais également utiliser des données comportementales pour les ajuster plus encore, tout comme on le constate dans la tarification dynamique.
D’autres travailleurs indépendants sont soumis à cette personalisation, estime la chercheuse Veena Dubal qui parle de discrimination salariale algorithmique. Les lieux de travail adoptent de plus en plus de logiciels de gestion basés sur l’IA, qui pourraient influencer indirectement les salaires en attribuant des projets et des équipes en fonction des données des employés, explique le chercheur Antonio Aloisi, co-auteur du livre Your boss is an algorithm. Plusieurs entreprises – comme Praisidio, HRBRain, Beqom ou HR Soft – proposent déjà des solutions pour évaluer les salaires, les avantages sociaux et les primes afin de les optimiser. La surveillance de la productivité des employés en temps réel se déploie, constatait déjà en 2022 le New York Times. Elle se complexifie d’outils de planning automatisés, d’outils de suivis du personnels… dans les secteurs de la santé, de la vente au détail, de l’hôtellerie… qui produisent une hyperpersonnalisation du traitement des travailleurs.
Le risque, c’est que les algorithmes décident de qui obtiendra le travail le mieux rémunéré, les meilleurs horaires, voir des horaires pleins. Le modèle dystopique du travail à la tâche à la Uber est en train de pénétrer l’économie du travail conventionnelle, estime Aloisi. Le salaire algorithmique personnalisé pourrait devenir la norme, explique la chercheuse Zephyr Teachout.
Le risque, c’est que ces calculs invisibilisent les discriminations salariales pourtant interdites, notamment en utilisant des données qui serviront de variables de substitutions aux discriminations, par exemple en favorisant les employés qui disposent de peu d’épargne pour plus mal les payer.
La résistance à ces nouvelles méthodes risque d’être compliquée. Au Japon, les avocats d’un syndicat ont obtenu que la direction d’IBM documente les données utilisées par son système d’IA pour évaluer les employés. Le système devra également expliquer sa pertinence par rapport aux règles salariales et, pour les travailleurs ayant de faibles notes, devra expliquer les raisons de ces notations aux salariés.
Stream "Ça (dys)fonctionne"
- ↪ Pour une démocratie algorithmique
- ↪ De l’impact de la désinformation sur l’IA
- ↪ Avons-nous besoin d’un nouveau Twitter ?
- ↪ Mobiliser le devoir de vigilance
- ↪ O tempora, o mores
- ↪ Luttes américaines
- ↪ Hackathon IA générative, 5-6 février
- ↪ Le paradoxe des prévisions
- ↪ De l’influence des milliardaires
- ↪ Pour une souveraineté numérique non-alignée