IA, réducteur culturel : vers un monde de similitudes

Plus une caractéristique culturelle est inhabituelle, moins elle a de chances d’être mise en évidence dans la représentation de la culture par un grand modèle de langage. L’IA saura-t-elle nous aider à identifier ce qui est nouveau ?

Hubert Guillaud

Dans sa newsletter, Programmable Mutter, le politiste Henry Farrell – qui a publié l’année dernière avec Abraham Newman, Underground Empire (qui vient d’être traduit chez Odile Jacob sous le titre L’Empire souterrain) un livre sur le rôle géopolitique de l’infrastructure techno-économique mise en place par les Etats-Unis – estime que le risque de l’IA est qu’elle produise un monde de similitude, un monde unique et moyen. 

Comme le disait la professeure de psychologie, Alison Gopnick, dans une tribune pour le Wall Street Journal, les LLM sont assez bons pour reproduire la culture, mais pas pour introduire des variations culturelles. Ces modèles sont « centripètes plutôt que centrifuges », explique Farrell : « ils créent des représentations qui tirent vers les masses denses du centre de la culture plutôt que vers la frange clairsemée de bizarreries et de surprises dispersées à la périphérie »

Farrell se livre alors à une expérience en générant un podcast en utilisant NotebookLM de Google. Mais le bavardage généré n’arrive pas à saisir les arguments à discuter. Au final, le système génère des conversations creuses, en utilisant des arguments surprenants pour les tirer vers la banalité. Pour Farrell, cela montre que ces systèmes savent bien plus être efficaces pour évoquer ce qui est courant que ce qui est rare. 

« Cela a des implications importantes, si l’on associe cela à la thèse de Gopnik selon laquelle les grands modèles de langues sont des moteurs de plus en plus importants de la reproduction culturelle. De tels modèles ne soumettront probablement pas la culture humaine à la « malédiction de la récursivité », dans laquelle le bruit se nourrit du bruit. Au contraire, ils analyseront la culture humaine avec une perte qui la biaise, de sorte que les aspects centraux de cette culture seront accentués et que les aspects plus épars disparaîtront lors de la traduction ». Une forme de moyennisation problématique, une stéréotypisation dont nous aurons du mal à nous extraire. « Le problème avec les grands modèles est qu’ils ont tendance à sélectionner les caractéristiques qui sont communes et à s’opposer à celles qui sont contraires, originales, épurées, étranges. Avec leur généralisation, le risque est qu’ils fassent disparaître certains aspects de notre culture plus rapidement que d’autres »

C’est déjà l’idée qu’il défendait avec la sociologue Marion Fourcadedans une tribune pour The Economist. Les deux chercheurs y expliquaient que l’IA générative est une machine pour « accomplir nos rituels sociaux à notre place ». Ce qui n’est pas sans conséquence sur la sincérité que nous accordons à nos actions et sur les connaissances que ces rituels sociaux permettent de construire. A l’heure où l’IA rédige nos CV, nos devoirs et nos rapports à notre place, nous n’apprendrons plus à les accomplir. Mais cela va avoir bien d’autres impacts, explique encore Farrell, par exemple sur l’évaluation de la recherche. Des tests ont montré que l’évaluation par l’IA ne ferait pas pire que celle par les humains… Mais si l’IA peut aussi bien que les humains introduire des remarques génériques, est-elle capable d’identifier et d’évaluer ce qui est original ou nouveau ? Certainement bien moins que les humains. Pour Farrell, il y a là une caractéristique problématique de l’IA : « plus une caractéristique culturelle est inhabituelle, moins elle a de chances d’être mise en évidence dans la représentation de la culture par un grand modèle ». Pour Farrell, ce constat contredit les grands discours sur la capacité d’innovation distribuée de l’IA. Au contraire, l’IA nous conduit à un aplatissement, effaçant les particularités qui nous distinguent, comme si nous devenions tous un John Malkovitch parmi des John Malkovitch, comme dans le film Dans la peau de John Malkovitch de Spike Jonze. Les LLM encouragent la conformité. Plus nous allons nous reposer sur l’IA, plus la culture humaine et scientifique sera aplanie, moyennisée, centralisée.