Avec cet article, nous nous lançons dans un dossier que nous allons consacrer à la reconnaissance faciale et au continuum sécuritaire. Première partie.
Your face belongs to us (Random House, 2023), le livre que la journaliste du New York Times, Kashmir Hill, a consacré à Clearview, l’entreprise leader de la reconnaissance faciale, est une plongée glaçante dans la dystopie qui vient.
Jusqu’à présent, j’avais tendance à penser que la reconnaissance faciale était problématique d’abord et avant tout parce qu’elle était défaillante. Elle est « une technologie qui souvent ne marche pas », expliquaient Mark Andrejevic et Neil Selwyn (Facial Recognition, Wiley, 2022), montrant que c’est souvent dans son implémentation qu’elle défaille. La juriste, Clare Garvie, faisait le même constat. Si l’authentification (le fait de vérifier qu’une personne est la même que sur une photo) fonctionne mieux que l’identification (le fait de retrouver une personne dans une banque d’image), les deux usages n’ont cessé ces dernières années de montrer leurs limites.
Mais les choses évoluent vite.

« Le plus grand danger de la reconnaissance faciale vient du fait qu’elle fonctionne plutôt très bien »
Dans leur livre, AI Snake Oil, les spécialistes de l’intelligence artificielle, Arvind Narayanan et Sayash Kapoor, soulignent pourtant que le taux d’erreur de la reconnaissance faciale est devenu négligeable (0,08% selon le NIST, l’Institut national des normes et de la technologie américain). « Quand elle est utilisée correctement, la reconnaissance faciale tend à être exacte, parce qu’il y a peu d’incertitude ou d’ambiguïté dans la tâche que les machines doivent accomplir ». Contrairement aux autres formes d’identification (identifier le genre ou reconnaître une émotion, qui sont bien plus sujettes aux erreurs), la différence cruciale c’est que l’information requise pour identifier des visages, pour les distinguer les uns des autres, est présente dans les images elles-mêmes. « Le plus grand danger de la reconnaissance faciale vient du fait qu’elle fonctionne plutôt très bien » et c’est en cela qu’elle peut produire énormément de dommages.
Le risque que porte la reconnaissance faciale repose tout entier dans la façon dont elle va être utilisée. Et de ce côté là, les dérives potentielles sont innombrables et inquiétantes. Gouvernements comme entreprises peuvent l’utiliser pour identifier des opposants, des personnes suspectes mais convaincues d’aucuns délits. Certes, elle a été utilisée pour résoudre des affaires criminelles non résolues avec succès. Certes, elle est commode quand elle permet de trier ou d’organiser ses photos… Mais si la reconnaissance faciale peut-être hautement précise quand elle est utilisée correctement, elle peut très facilement être mise en défaut dans la pratique. D’abord par ses implémentations qui peuvent conduire à y avoir recours d’une manière inappropriée et disproportionnée. Ensuite quand les images ne sont pas d’assez bonnes qualités, au risque d’entraîner tout le secteur de la sécurité dans une course sans limites à toujours plus de qualité, nécessitant des financements disproportionnés et faisant peser un risque totalitaire sur les libertés publiques. Pour Narayanan et Kapoor, nous devons avoir un débat vigoureux et précis pour distinguer les bons usages des usages inappropriés de la reconnaissance faciale, et pour développer des gardes-fous pour prévenir les abus et les usages inappropriés tant des acteurs publics que privés.
Certes. Mais cette discussion plusieurs fois posée n’a pas lieu. En 2020, quand la journaliste du New York Times a commencé ses révélations sur Clearview, « l’entreprise qui pourrait mettre fin à la vie privée », le spécialiste de la sécurité, Bruce Schneier avait publié une stimulante tribune pour nous inviter à réglementer la ré-identification biométrique. Pour lui, nous devrions en tant que société, définir des règles pour déterminer « quand une surveillance à notre insu et sans notre consentement est permise, et quand elle ne l’est pas », quand nos données peuvent être combinées avec d’autres et quand elles ne peuvent pas l’être et enfin savoir quand et comment il est permis de faire de la discrimination biométrique et notamment de savoir si nous devons renforcer les mesures de luttes contre les discriminations qui vont se démultiplier avec cette technologie et comment. En France, à la même époque, le sociologue Laurent Mucchielli qui avait fait paraître son enquête sur la vidéosurveillance (Vous êtes filmés, Dunod, 2018 – voir notre compte-rendu de l’époque, désabusé), posait également sur son blog des questions très concrètes sur la reconnaissance faciale : « Quelle partie de la population serait fichée ? Et qui y aurait accès ? Voilà les deux problèmes. » Enfin, les deux professeurs de droit, Barry Friedman (auteur de Unwarranted : policing without permission, 2017) et Andrew Guthrie Ferguson, (auteur de The Rise of Big Data policing, 2017) condamnaient à leur tour, dans une tribune pour le New York Times, « la surveillance des visages » (c’est-à-dire, l’utilisation de la reconnaissance faciale en temps réel pour trouver où se trouve quelqu’un) mais reconnaissaient que l’identification faciale (c’est-à-dire la réidentification d’un criminel, uniquement pour les crimes les plus graves), elle, pourrait être autorisée. Ils y mettaient néanmoins une condition : la réidentification des visages ne devrait pas être autorisée sans décision de justice et sans sanction en cas d’utilisation abusive. Mais, à nouveau, ce n’est pas ce qui s’est passé. La reconnaissance faciale s’est déployée sans contraintes et sans limites.
Les dénonciations comme les interdictions de la reconnaissance faciale sont restées éparses. Les associations de défense des libertés publiques ont appelé à des moratoires et mené des campagnes pour l’interdiction de la reconnaissance faciale, comme Ban Facial Recognition aux Etats-Unis ou Reclaim your face en Europe. Souvent, ces interdictions restent circonscrites à certains types d’usages, notamment les usages de police et de surveillance d’État, oubliant les risques que font courir les outils de surveillance privée.
Reste que le débat public sur son implémentation et ses modalités est inexistant. Au lieu de débats de sociétés, nous avons des « expérimentations » qui dérogent au droit, des déploiements épars et opaques (plus de 200 autorités publiques par le monde sont clientes de Clearview qui n’est qu’un outil parmi une multitude de dispositifs plus ou moins efficaces, allant de la reconnaissance faciale, à la vidéosurveillance algorithmique), et surtout, un immense déni sur les enjeux de ces technologies. Au final, nous ne construisons aucune règle morale sur son utilité ou son utilisation. Nous faisons collectivement l’autruche et son utilisation se déploie sans cadres légaux clairs dans un continuum de technologies sécuritaires et problématiques, allant des drones aux technologies de contrôle de l’immigration.
Une histoire de la reconnaissance faciale : entre amélioration par à-coups et paniques morales à chaque amélioration
Dans son livre, Your face belongs to us, Kashmir Hill alterne à la fois une histoire de l’évolution de la technologie et une enquête sur le développement de Clearview.
Sur cette histoire, Hill fait un travail qui met en exergue des moments forts. Elle rappelle d’abord que le terme de vie privée, définit à l’origine comme le droit d’être laissé tranquille par les juristes américains Samuel Warren et Louis Brandeis, était inspiré par la création de la pellicule photographique par Kodak, qui promettait de pouvoir sortir l’appareil photo des studios où il était jusqu’alors confiné par son temps de pause très long. Dans cette longue histoire de la reconnaissance faciale, Hill raconte notamment l’incroyable histoire du contrôle des tickets de trains américains dans les années 1880, où les contrôleurs poinçonnaient les tickets selon un codage réduit (de 7 caractéristiques physiques dont le genre, l’âge, la corpulence…) permettant aux contrôleurs de savoir si le billet contrôlé correspondait bien à la personne qui l’avait déjà présenté. Bien évidemment, cette reconnaissance humaine et basique causa d’innombrables contestations, tant ces appréciations d’un agent à un autre pouvaient varier. Mais la méthode aurait inspiré Herman Hollerith, qui va avoir l’idée de cartes avec des perforations standardisées et va adapter la machine pour le recensement américain, donnant naissance à l’entreprise qui deviendra IBM.
Hill surfe sur l’histoire de l’IA, des Perceptrons de Marvin Minsky, à Panoramic, l’entreprise lancée dans les années 60 par Woody Bledsoe, qui va être la première, à la demande de la CIA, à tenter de créer un outil de reconnaissance des visages simplifié, en créant une empreinte de visages comme autant de points saillants. Elle raconte que les améliorations dans le domaine vont se faire avec l’amélioration de la qualité et de la disponibilité des images et de la puissance des ordinateurs, à l’image des travaux de Takeo Kanade (dans les années 70, pour l’entreprise japonaise NEC), puis de Matthew Turk qui va bénéficier de l’amélioration de la compression des images. Accusé d’être à la tête d’un programme Orwellien, Turk s’en défendra pourtant en soulignant qu’enregistrer les informations sur les gens qui passent devant une caméra est surtout bénin. A croire que notre déni sur les conséquences de cette technologie remonte à loin.
En 2001, lors du Super Bowl, plusieurs entreprises, dont Viisage Technology et Raytheon, communiquent sur le fait qu’elles ont sécurisé l’accès au stade grâce à la reconnaissance faciale, identifiant 19 spectateurs avec un passé criminel. Viisage a récupéré la technologie de Turk et l’a commercialisé pour des badges d’identification pour entreprises. Ces déploiements technologiques, financés par les agences fédérales, commencent à inquiéter, notamment quand on apprend que des entreprises y ont recours, comme les casinos. Reste que la technologie est encore largement défaillante et peine bien souvent à identifier quiconque.
Mais le 11 septembre a changé la donne. Le Patriot Act permet aux agences du gouvernement d’élargir leurs accès aux données. Joseph Atick, cofondateur de Visionics, une autre entreprise du secteur, propose sa technologie aux aéroports pour rassurer les voyageurs. Il sait que celle-ci n’est pas au point pour identifier les terroristes, mais il a besoin des données pour améliorer son logiciel. Bruce Schneider aura beau dénoncer le « théâtre de la sécurité« , l’engrenage sécuritaire est lancé… Face à ses déploiements, les acteurs publics ont besoin d’évaluer ce qu’ils achètent. Jonathon Philips du National Institute of Standards and Technology (Nist) créée une base de données de visages de très bonne qualité sous différents angles, « Feret », pour tester les outils que vendent les entreprises. Il inaugure un concours où les vendeurs de solutions sont invités à montrer qui parvient à faire le mieux matcher les visages aux photos. En 2001, le premier rapport du Nist montre surtout qu’aucune entreprise n’y parvient très bien. Aucune entreprise n’est capable de déployer un système efficace, mais cela ne va pas les empêcher de le faire. Les meilleures entreprises, comme celle d’Atick, parviennent à faire matcher les photos à 90%, pour autant qu’elles soient prises dans des conditions idéales. Ce qui tient surtout de l’authentification faciale fonctionne également mieux sur les hommes que sur les femmes, les personnes de couleurs ou les jeunes. En 2014, le FBI lance à son tour un concours pour rendre sa base d’images de criminels cherchable, mais là encore, les résultats sont décevants. La technologie échoue dès qu’elle n’est pas utilisée dans des conditions idéales.
En 2006, le juriste de l’ACLU James Ferg-Cadima découvre dans une grande surface la possibilité de payer depuis son empreinte digitale. Face à de tels dispositifs, s’inquiète-t-il, les consommateurs n’ont aucun moyen de protéger leurs empreintes biométriques. Quand son mot de passe est exposé, on peut en obtenir un nouveau, mais nul ne peut changer son visage ou ses empreintes. Le service « Pay by Touch », lancé en 2002 fait faillite en 2007, avec le risque que sa base d’empreintes soit vendue au plus offrant ! Avec l’ACLU, Ferg-Cadima œuvre alors à déployer une loi qui oblige à recevoir une permission pour collecter, utiliser ou vendre des informations biométriques : le Biometric Information Privacy Act (Bipa) que plusieurs Etats vont adopter.
En 2009, Google imagine des lunettes qui permettent de lancer une recherche en prenant une photo, mais s’inquiète des réactions, d’autant que le lancement de Street View en Europe a déjà terni son image de défenseur de la vie privée. La fonctionnalité de reconnaissance faciale existe déjà dans Picasa, le service de stockage d’images de Google, qui propose d’identifier les gens sur les photos et que les gens peuvent labelliser du nom de leurs amis pour aider le logiciel à progresser. En 2011, la fonctionnalité fait polémique. Google l’enterre.
A la fin des années 90, l’ingénieur Henry Schneiderman accède à Feret, mais trouve que la base de données est trop parfaite pour améliorer la reconnaissance faciale. Il pense qu’il faut que les ordinateurs soient d’abord capables de trouver un visage dans les images avant qu’ils puissent les reconnaître. En 2000, il propose d’utiliser une nouvelle technique pour cela qui deviendra en 2004, PittPatt, un outil pour distinguer les visages dans les images. En 2010, le chercheur Alessandro Acquisti, fasciné par le paradoxe de la vie privée, lance une expérience en utilisant PittPatt et Facebook et montre que ce croisement permet de ré-identifier tous les étudiants qui se prêtent à son expérience, même ceux qui n’ont pas de compte Facebook, mais qui ont été néanmoins taggés par leurs amis dans une image. Acquisti prédit alors la « démocratisation de la surveillance » et estime que tout le monde sera demain capable d’identifier n’importe qui. Pour Acquisti, il sera bientôt possible de trouver le nom d’un étranger et d’y associer alors toutes les données disponibles, des sites web qu’il a visité à ses achats en passant par ses opinions politiques… et s’inquiète du fait que les gens ne pourront pas y faire grand chose. Pour le professeur, d’ici 2021 il sera possible de réidentifer quelqu’un depuis son visage, prédit-il. Acquisti s’est trompé : la fonctionnalité a été disponible bien plus tôt !
En 2011, PittPatt est acquise par Google qui va s’en servir pour créer un système pour débloquer son téléphone. En décembre 2011, à Washington se tient la conférence Face Facts, sponsorisée par la FTC qui depuis 2006 s’est doté d’une petite division chargée de la vie privée et de la protection de l’identité, quant, à travers le monde, nombre d’Etats ont créé des autorités de la protection des données. Si, suite à quelques longues enquêtes, la FTC a attaqué Facebook, Google ou Twitter sur leurs outils de réglages de la vie privée défaillants, ces poursuites n’ont produit que des arrangements amiables. A la conférence, Julie Brill, fait la démonstration d’un produit de détection des visages que les publicitaires peuvent incorporer aux panneaux publicitaires numériques urbains, capable de détecter l’âge où le genre. Daniel Solove fait une présentation où il pointe que les Etats-Unis offrent peu de protections légales face au possible déploiement de la reconnaissance faciale. Pour lui, la loi n’est pas prête pour affronter le bouleversement que la reconnaissance faciale va introduire dans la société. Les entreprises se défendent en soulignant qu’elles ne souhaitent pas introduire de systèmes pour dé-anonymiser le monde, mais uniquement s’en servir de manière inoffensive. Cette promesse ne va pas durer longtemps…
En 2012, Facebook achète la startup israélienne Face.com et Zuckerberg demande aux ingénieurs d’utiliser Facebook pour « changer l’échelle » de la reconnaissance faciale. Le système de suggestions d’étiquetage de noms sur les photos que les utilisateurs chargent sur Facebook est réglé pour n’identifier que les amis, et pas ceux avec qui les utilisateurs ne sont pas en relation. Facebook assure que son outil ne sera jamais ouvert à la police et que le réseau social est protégé du scraping. On sait depuis que rien n’a été moins vrai. Après 5 ans de travaux, en 2017, un ingénieur de Facebook provenant de Microsoft propose un nouvel outil à un petit groupe d’employés de Facebook. Il pointe la caméra de son téléphone en direction d’un employé et le téléphone déclame son nom après l’avoir reconnu.
A Stanford, des ingénieurs ont mis au point un algorithme appelé Supervision qui utilise la technologie des réseaux neuronaux et qui vient de remporter un concours de vision par ordinateur en identifiant des objets sur des images à des niveaux de précision jamais atteints. Yaniv Taigman va l’utiliser et l’améliorer pour créer DeepFace. En 2014, DeepFace est capable de faire matcher deux photos d’une même personne avec seulement 3% d’erreurs, même si la personne est loin dans l’image et même si les images sont anciennes. En 2015, DeepFace est déployé pour améliorer l’outil d’étiquetage des images de Facebook.
En 2013, les révélations d’Edward Snowden changent à nouveau la donne. D’un coup, les gens sont devenus plus sensibles aux incursions des autorités à l’encontre de la vie privée. Pourtant, malgré les efforts de militants, le Congrès n’arrive à passer aucune loi à l’encontre de la reconnaissance faciale ou de la protection de la vie privée. Seules quelques villes et Etats ont musclé leur législation. C’est le cas de l’Illinois où des avocats vont utiliser le Bipa pour attaquer Facebook accusé d’avoir créer une empreinte des visages des 1,6 millions d’habitants de l’Etat.
Cette rapide histoire, trop lacunaire parfois, semble s’arrêter là pour Hill, qui oriente la suite de son livre sur le seul Clearview. Elle s’arrête effectivement avec le déploiement de l’intelligence artificielle et des réseaux de neurones qui vont permettre à la reconnaissance faciale de parvenir à l’efficacité qu’elle espérait.
Reste que cette rapide histoire, brossée à grands traits, souligne néanmoins plusieurs points dans l’évolution de la reconnaissance faciale. D’abord que la reconnaissance faciale progresse par vague technologique, nécessitant l’accès à de nouvelles puissances de calcul pour progresser et surtout l’accès à des images en quantité et en qualité.
Ensuite, que les polémiques et paniques nourrissent les projets et les relancent plutôt que de les éteindre. Ceux qui les développent jouent souvent un jeu ambivalent, minimisant et dissimulant les capacités des programmes qu’ils déploient.
Enfin, que les polémiques ne permettent pas de faire naître des législations protectrices, comme si la législation était toujours en attente que la technologie advienne. Comme si finalement, il y avait toujours un enjeu à ce que la législation soit en retard, pour permettre à la technologie d’advenir.
(à suivre)